Introduction and methodology of our model: Phase-field in fracture mechanics:

•A competitive approach for realistic problems (e.g., crack branching)

•Treats the crack as a second phase

•Uses gradient terms to smear out the crack faces (for standard numerical methods)

Shortcomings of the existing phase-field models:

• Inability to accurately model crack faces closing / shearing

Our proposed crack energy model:

$$\int_{O} \left((1 - |\boldsymbol{d}|)^2 W(\nabla \boldsymbol{y}) + \left(1 - (1 - |\boldsymbol{d}|)^2 \right) W_{\mathrm{d}}(\nabla \boldsymbol{y}, \boldsymbol{n}) \right) \mathrm{d}V_{\boldsymbol{x}} + G_c \int_{O} \left((1 - |\boldsymbol{d}|)^2 \right) W_{\mathrm{d}}(\nabla \boldsymbol{y}, \boldsymbol{n}) = 0$$

•Accounts for the direction of the crack

•Classifies the deformation mode using **QR** decomposition

•Provides the appropriate material response based on type of deformation

Deformation mode	(a)	(b)	(c)	(
Loading	↑ 			
Intact Response				
Crack Response				

NeoHookean material utilized, enabling simulation in the large deformations

Methods of simulation used in this work:

Dolfin-Adjoint library: To minimize the energy WRT displacement for constant cracks

FEniCS library: To minimize energy WRT crack vector and displacement for crack growth

A Phase-Field Fracture Model for Crevasse Behavior in Glaciers

^a Department of Civil and Environmental Engineering, Carnegie Mellon University, <u>mhakimza@andrew.cmu.edu</u>

Maryam Hakimzadeh^{a*}, Kaushik Dayal^{a,}, and David Rounce^a

Carnegie Mellon University