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Physics-based Models

Can represent the Processes of Nature

❑Physics-based models are approximated via ODEs/PDEs

      To model earthquake: 

      To model waves: 
𝜕2𝑢

𝜕𝑡2 − 𝜈2 𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0 

❑Computational Mechanics helps us simulate these equations.

𝑚
𝑑2𝑢

𝑑𝑡2 + k
𝑑𝑢

𝑑𝑡
+ 𝐹0 = 0
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Challenges with Numerical Methods

• Require knowledge of conservation laws, and boundary conditions

• Time consuming and strenuous simulations. 

• Difficulties in mesh generation.

• Solving inverse problems or discovering missing physics can be prohibitively 
expensive.
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High Dimensional Real 
World System (e.g., fracture)
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Surrogate Modeling Techniques

Finite Dimensional 
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• Functional Data
• Discretization Invariant
• Continuous quantities
• Learning operators between function spaces

• Discretized Data
• Discretization dependent
• Queries on mesh
• Learning functions between vector spaces

PCA Auto-encoders

K-PCA Diffusion maps

f-PCA DeepONet

F-RKHS
FNO

PI-DeepONet
PINO

PINNs

WNO

LNO

Infinite Dimensional 
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Operator Learning Framework

(approximate)
𝑢( . ) 𝑠( . )

Input-output map

Φ: 𝒰 → 𝒮

Data 𝒰𝑛 , 𝒮𝑛 𝑛=1
𝑁

𝒮𝑛 = Φ(ℱ𝑛) , ℱ𝑛~𝜇 𝑖. 𝑖. 𝑑

Operator learning

Ψ:× Θ → 𝒮 such that Ψ . , 𝜃∗ ≈ Φ

Training 𝜃∗ = argminθ𝑙({𝒰𝑛 , Ψ(𝒮𝑛 , 𝜃)})

and/or Physics

𝐺
𝑢( . )

Input function space Output function space

(operator)
𝑠( . )
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Deep Operator Network (DeepONet)

• Generalized Universal Approximation Theorem for Operator [Chen ’95, Lu et al. ’19] 

• Branch net: Input {𝑢(𝑥𝑖)}𝑖=1
𝑚 , output: 𝑏1, 𝑏2, . . , 𝑏𝑝

𝑇
∈ ℝ𝑝

• Trunk net: Input 𝑦, output: 𝑡1, 𝑡2, . . , 𝑡𝑝
𝑇

∈ ℝ𝑝

• Input 𝑢 is evaluated at the fixed locations {𝑦𝑖}𝑖=1
𝑚

𝐺𝜃 𝑢 𝑦 = ෍

𝑖=1

𝑝

𝑏𝑖(𝑢 𝑥1 , 𝑢 𝑥2 , … , 𝑢 𝑥𝑚 ) ∙ 𝑡𝑟𝑖 𝑦

branch net trunk net
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𝑦

)

𝐺𝜃 𝑢 𝑦

𝜃∗

ℒ𝑟 𝜃 + ℒ𝑖(𝜃)

Minimize loss

Can be FNN/CNN/U-Net/LSTM etc.
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Physics-Informed DeepONet

• Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial differential equations with physics-
informed DeepONets. Science Advances, 7(40), October 2021.

• Somdatta Goswami, Yin, M., Yu, Y., & Karniadakis, G. E. (2022). A physics-informed variational DeepONet for predicting crack path in quasi-brittle 
materials. Computer Methods in Applied Mechanics and Engineering, 391, 114587.
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Challenges With Neural Operators

• For Data Driven Models: Requires voluminous amount of high-fidelity training 
dataset – extensive parametric sweep on the numerical solvers.

• For Physics-Informed Models : Physics-Informed Neural Operators – 

• Extremely expensive to train* due to the computation of the gradients for 
large number of function used to represent the function space.

• No proofs on error boundedness for generalization accuracy.

* Mandl, Luis, Somdatta Goswami, Lena Lambers, and Tim Ricken. "Separable physics-informed DeepONet: Breaking the curse of dimensionality in 
physics-informed machine learning." Computer Methods in Applied Mechanics and Engineering 434 (2025): 117586.
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Data-driven ML Models for Dynamical Systems

Michałowska, K., Goswami, S., Karniadakis, G. E., & Riemer-Sørensen, S. (2024, June). Neural operator learning for long-time integration in dynamical 
systems with recurrent neural networks. In 2024 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

𝑢𝑡 − 𝜂𝑢𝑢𝑥 + 𝛾𝑢𝑥𝑥𝑥 = 0KdV equation: Learning Task: 𝑢 𝑥, 𝑡 = 0 →  𝑢 𝑥, 𝑡 ,

∆𝑡 =  0.025 Ωx = [0,10] ∆𝑥 =  0.2 



11

Centrum IntelliPhysics

Physics-Informed Surrogate Models

A physics-informed variational DeepONet for predicting crack path in 
quasi-brittle materials – Goswami et. al, CMAME, 2022

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=GaKrpSkAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=GaKrpSkAAAAJ:Se3iqnhoufwC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=GaKrpSkAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=GaKrpSkAAAAJ:Se3iqnhoufwC
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Hybrid Solvers: Physics-Informed ML-Integrated 
Numerical Simulators 
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The Hybrid Solver

1. Employ Domain Decomposition Framework:
 Location requiring finer discretization –approximated using physics informed neural operators

Locations ‘ok’ with coarser discretization – approximated using numerical solvers.

2. The two solvers handing over an overlapping domain and are coupled using the Alternating Schwartz 
coupling framework.

3. For time dependent systems, the time marching employs a Newmark-Beta method, instead of the neural 
operators
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Domain Decomposition Framework

PI- DeepONet Model 1: FEM

Replaced 

Model 2:

Can suffice with coarse mesh

Requires fine mesh

Overlapping Decomposed Domains
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I

out

I

II

o I II = I

out

II

Schwartz alternating method at overlapping boundary: 

u at  
(model 1)

out

II u at  
(model 2)

in

I

Information Exchange 
1. Receive the boundary conditions of I and obtain the 
displacement u at       , pass it to model 2 in II.
2. Receive the boundary conditions of II and obtain the
displacement u at      , pass it to model 1 in I .
3. Obtain the results when the u difference from two successive
iterations is smaller than the critical value.

out

II

in

I

I

II

FE PI-DeepONet

:Boundary for 

DeepONet 

out

II
:Boundary for FEin

I

Inner iteration

Spatial Domain Coupling
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Hyper-elasticity under quasi-static loading conditions
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Hyper-elasticity under quasi-static loading conditions



18

Centrum IntelliPhysics

Performance of FE-NO

At t=4, the neural operators (NO) coupling needs more inner iterations. 

No need Newton’s solver for additional root-finding iterations at each inner iterations.

FE-NO coupling is 20% faster than FE-FE coupling. 

Also, FE-NO is more stable under large loadings.  
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Linear Elastic Model in Dynamic Regime
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Linear Elastic Model in Dynamic Regime
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Improvement in Error Accumulation
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Initial decomposed domains Decomposed domain after a few timesteps

Future work: Adaptive extension of the ML –simulated 
subdomain
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Key Points

• We successfully employed domain decomposition using FE-NO coupling.

• We significantly reduced error accumulation for time dependent systems using Newmark-Beta time 
marching method.

• We are implementing adaptive extension of ML-simulated subdomains.



Thank you for 
your attention!   

Contact: sgoswam4@jhu.edu  
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Newmark-beta time discretization method: 
Time-advancing Physic-informed DeepONet:

predict the current time step values based on the

displacement, velocity, acceleration from previous time step 

and current boundary conditions

2. Temporal dimension coupling: new physic-informed DeepONet architecture

Numerical solver: FEM
Displacement and velocity 

from previous time step 

current boundary conditions

equivalent

New DeepONet architecture 
Covert into strong form in  

phyiscs-informed DeepONet 



2. Temporal dimension coupling: Working Flowchart of time advancing NOs
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