

Accelerating Numerical Solvers with AI-based Surrogate Models

Presenter: Maryam Hakimzadeh

Wei Wang, Haihui Ruan, Somdatta Goswami Civil and Systems Engineering Johns Hopkins University

Physics-based Models

Can represent the Processes of Nature

☐ Physics-based models are approximated via **ODEs/PDEs**To model earthquake: $m \frac{d^2 u}{dt^2} + k \frac{du}{dt} + F_0 = 0$

To model earthquake:
$$m \frac{d^2 u}{dt^2} + k \frac{du}{dt} + F_0 = 0$$

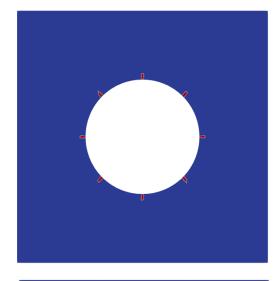
To model waves:
$$\frac{\partial^2 u}{\partial t^2} - v^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 0$$

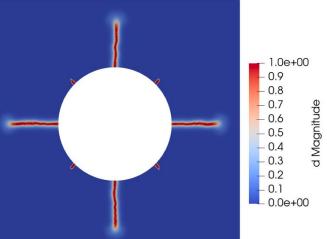
Computational Mechanics helps us simulate these equations.

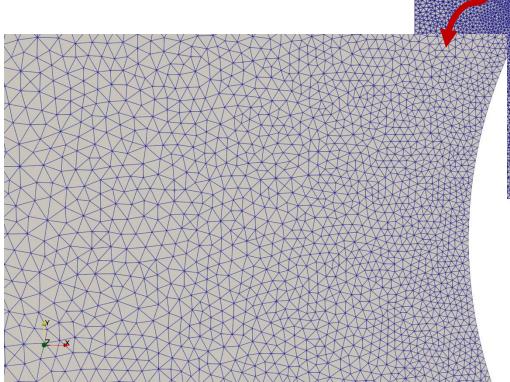
Challenges with Numerical Methods

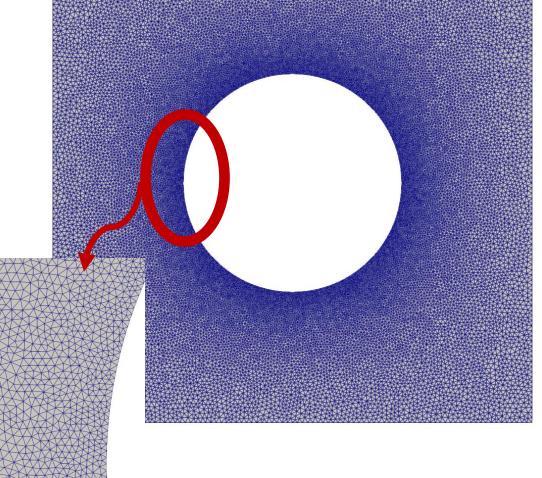
- Require knowledge of conservation laws, and boundary conditions
- Time consuming and strenuous simulations.
- Difficulties in mesh generation.
- Solving inverse problems or discovering missing physics can be prohibitively expensive.

High Dimensional Real World System (e.g., fracture)









Surrogate Modeling Techniques

- Discretized DataDiscretization dependentQueries on mesh
- Learning functions between vector spaces

PCA Auto-encoders

K-PCA Diffusion maps

Finite Dimensional

PINNs

Functional Data

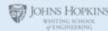
Data-driven

Physics Informed

- Discretization Invariant
- Continuous quantities
- Learning operators between function spaces

Infinite Dimensional

PI-DeepONet PINO



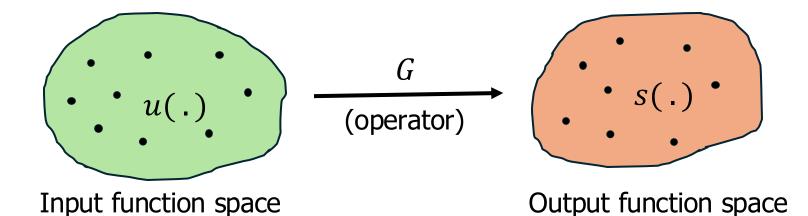
Operator Learning Framework

Input-output map

$$\Phi: \mathcal{U} \to \mathcal{S}$$

Data $\{\mathcal{U}_n, \mathcal{S}_n\}_{n=1}^N$ and/or Physics

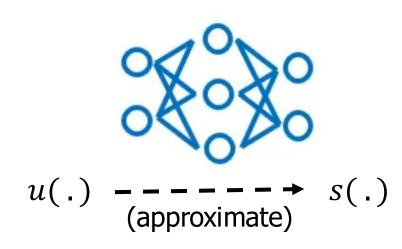
$$S_n = \Phi(\mathcal{F}_n)$$
 , $\mathcal{F}_n \sim \mu i.i.d$



Operator learning

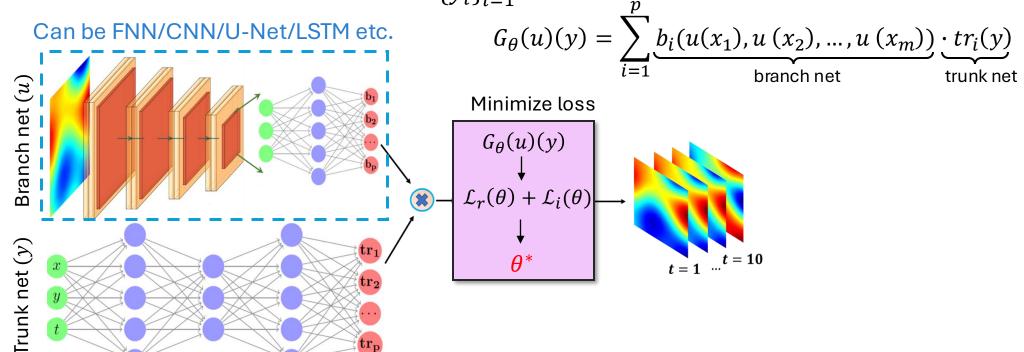
$$\Psi: \times \Theta \to S$$
 such that $\Psi(., \theta^*) \approx \Phi$

Training
$$\theta^* = \operatorname{argmin}_{\theta} l(\{\mathcal{U}_n, \Psi(\mathcal{S}_n, \theta)\})$$

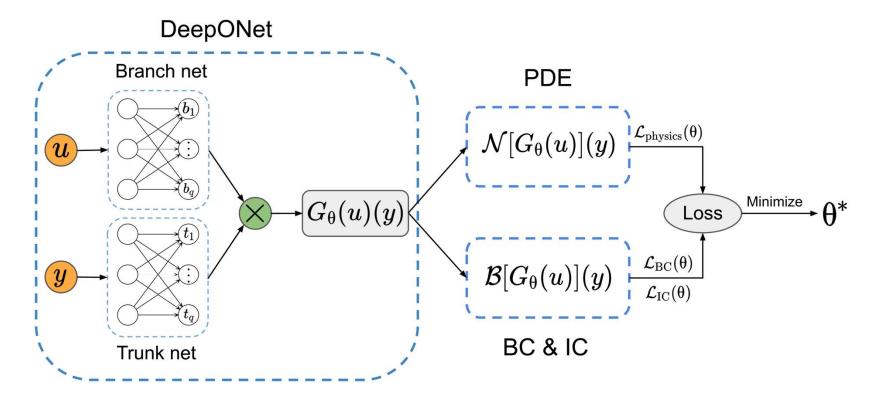


Deep Operator Network (DeepONet)

- Generalized Universal Approximation Theorem for Operator [Chen '95, Lu et al. '19]
- Branch net: Input $\{u(x_i)\}_{i=1}^m$, output: $[b_1, b_2, ..., b_p]^T \in \mathbb{R}^p$
- **Trunk net**: Input y, output: $[t_1, t_2, ..., t_p]^T \in \mathbb{R}^p$
- Input u is evaluated at the fixed locations $\{y_i\}_{i=1}^m$



Physics-Informed DeepONet



- Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial differential equations with physics-informed DeepONets. Science Advances, 7(40), October 2021.
- Somdatta Goswami, Yin, M., Yu, Y., & Karniadakis, G. E. (2022). A physics-informed variational DeepONet for predicting crack path in quasi-brittle materials. Computer Methods in Applied Mechanics and Engineering, 391, 114587.

Challenges With Neural Operators

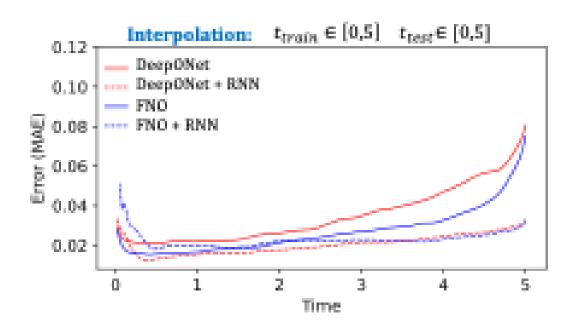
- For Data Driven Models: Requires voluminous amount of high-fidelity training dataset extensive parametric sweep on the numerical solvers.
- For Physics-Informed Models: Physics-Informed Neural Operators
 - Extremely expensive to train* due to the computation of the gradients for large number of function used to represent the function space.
 - No proofs on error boundedness for generalization accuracy.

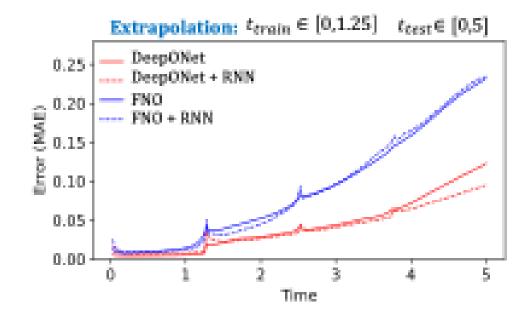
^{*} Mandl, Luis, Somdatta Goswami, Lena Lambers, and Tim Ricken. "Separable physics-informed DeepONet: Breaking the curse of dimensionality in physics-informed machine learning." *Computer Methods in Applied Mechanics and Engineering* 434 (2025): 117586.

Data-driven ML Models for Dynamical Systems

KdV equation:
$$u_t - \eta u u_x + \gamma u_{xxx} = 0$$

Learning Task:
$$u(x, t = 0) \rightarrow u(x, t)$$
, $\Omega_x = [0,10] \quad \Delta t = 0.025 \quad \Delta x = 0.2$

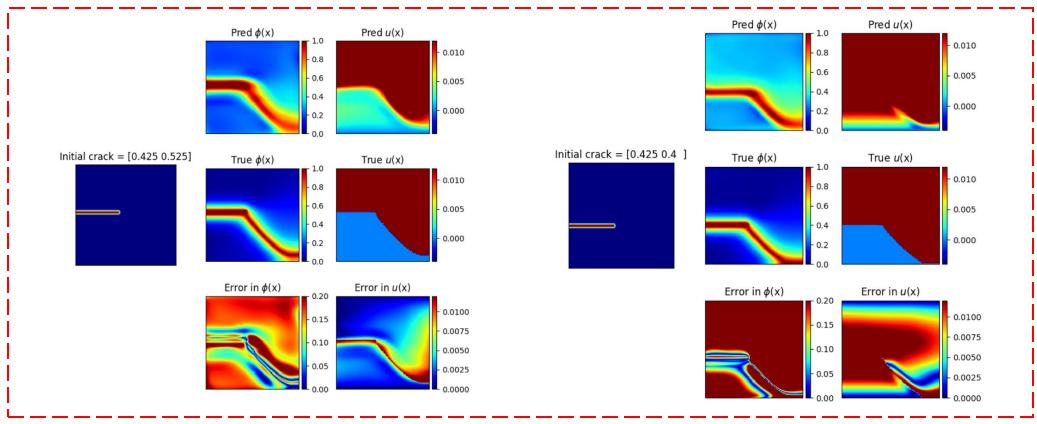




Michałowska, K., Goswami, S., Karniadakis, G. E., & Riemer-Sørensen, S. (2024, June). Neural operator learning for long-time integration in dynamical systems with recurrent neural networks. In 2024 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

Centrum IntelliPhysics

Physics-Informed Surrogate Models



A physics-informed variational DeepONet for predicting crack path in quasi-brittle materials – Goswami et. al, CMAME, 2022

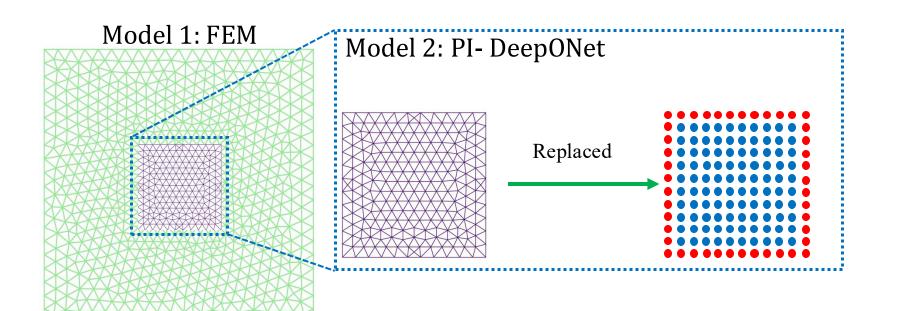
Hybrid Solvers: Physics-Informed ML-Integrated Numerical Simulators

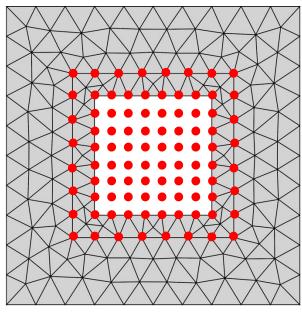
The Hybrid Solver

- 1. Employ Domain Decomposition Framework:
 - Location requiring finer discretization –approximated using **physics informed neural operators** Locations 'ok' with coarser discretization approximated using numerical solvers.
- 2. The two solvers handing over an overlapping domain and are coupled using the Alternating Schwartz coupling framework.
- 3. For time dependent systems, the time marching employs a Newmark-Beta method, instead of the neural operators

Domain Decomposition Framework

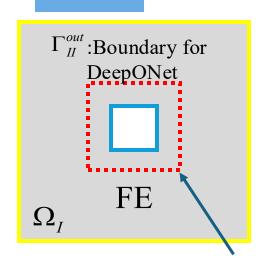
Overlapping Decomposed Domains

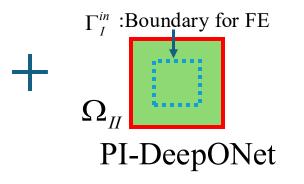


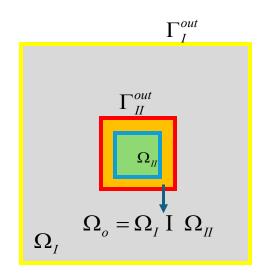


- Can suffice with coarse mesh
- Requires fine mesh

Spatial Domain Coupling



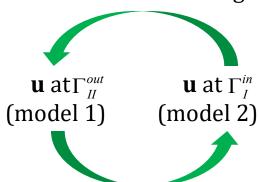




Inner iteration

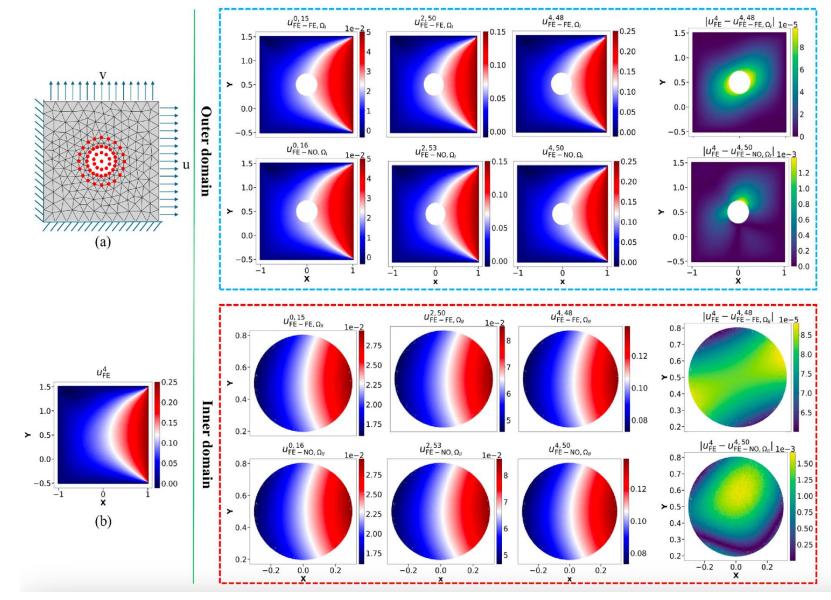
Schwartz alternating method at overlapping boundary:

Information Exchange

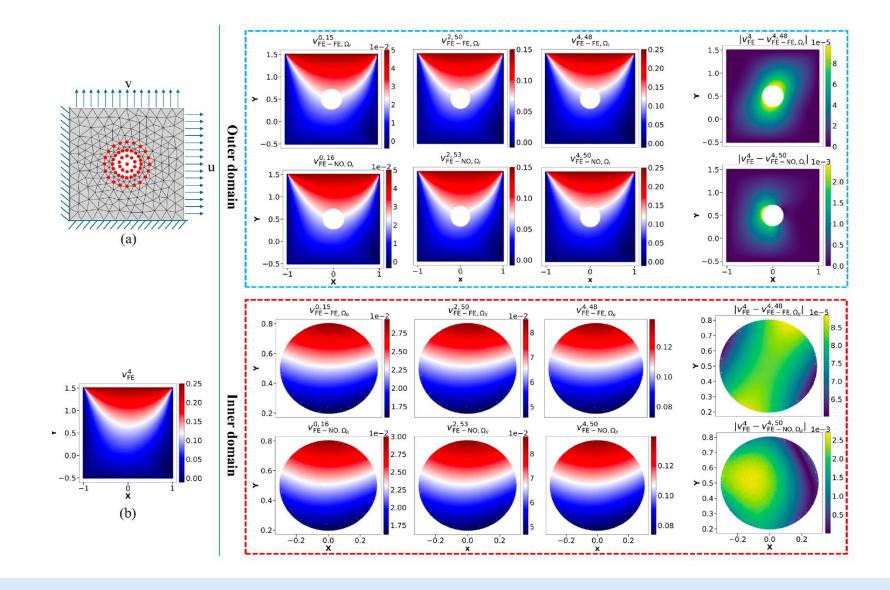


- 1. Receive the boundary conditions of Ω_I and obtain the displacement **u** at Γ_{II}^{out} , pass it to model 2 in Ω_{II} .
- 2. Receive the boundary conditions of Ω_{II} and obtain the displacement \mathbf{u} at Γ_{I}^{in} , pass it to model 1 in Ω_{I} .
- 3. Obtain the results when the \mathbf{u} difference from two successive iterations is smaller than the critical value.

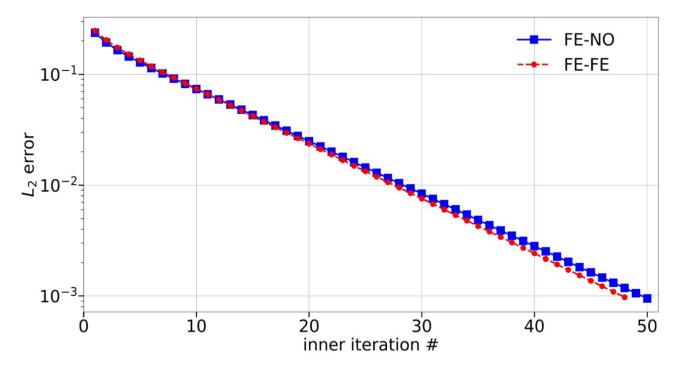
Hyper-elasticity under quasi-static loading conditions



Hyper-elasticity under quasi-static loading conditions



Performance of FE-NO



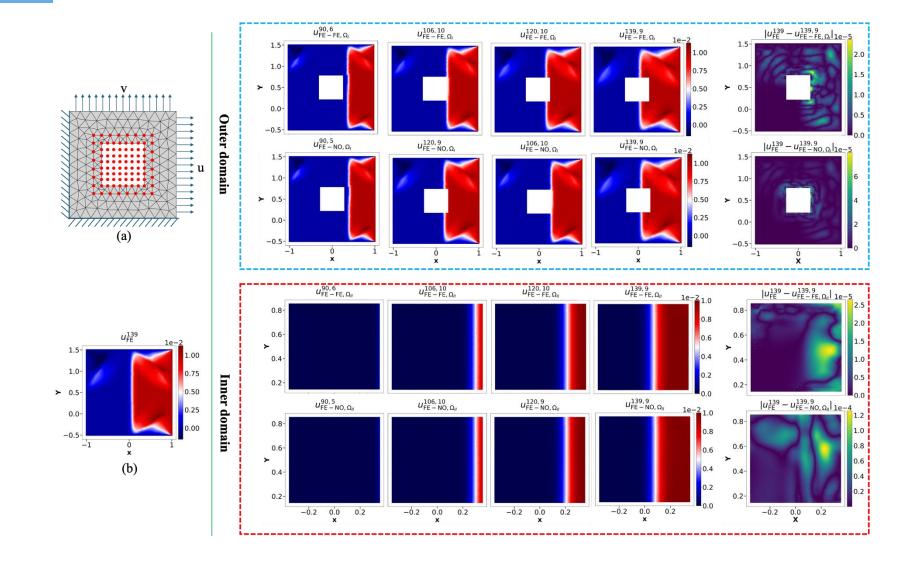
At t=4, the neural operators (NO) coupling needs more inner iterations.

No need Newton's solver for additional root-finding iterations at each inner iterations.

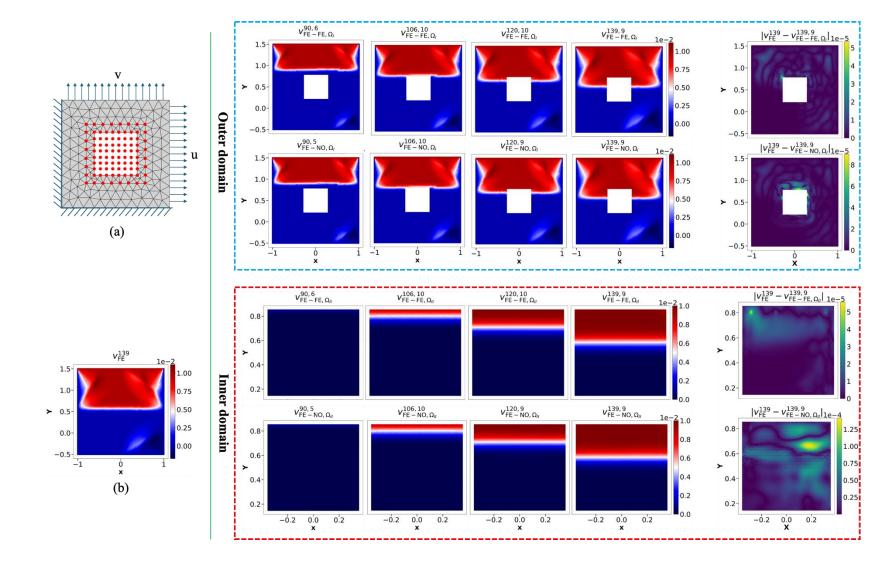
FE-NO coupling is 20% faster than FE-FE coupling.

Also, FE-NO is more stable under large loadings.

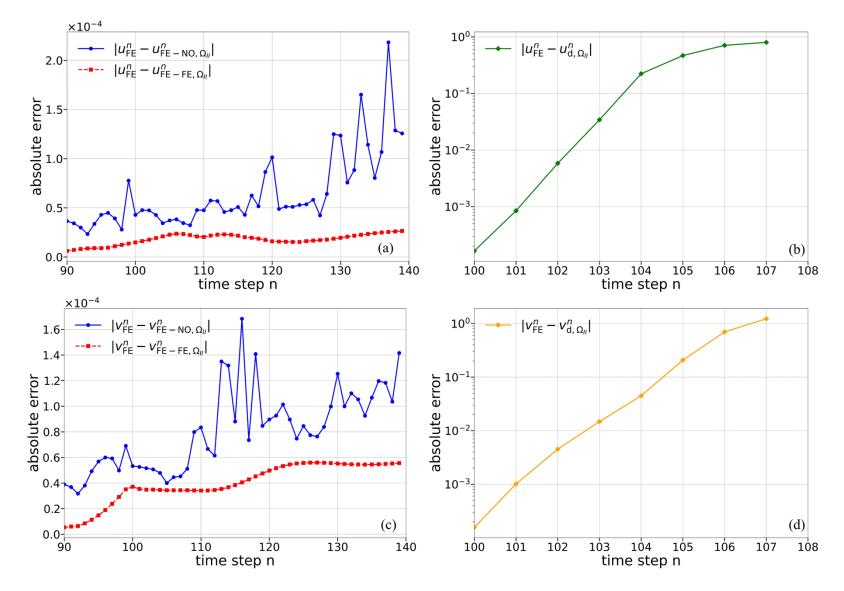
Linear Elastic Model in Dynamic Regime



Linear Elastic Model in Dynamic Regime

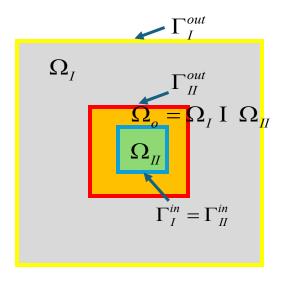


Improvement in Error Accumulation

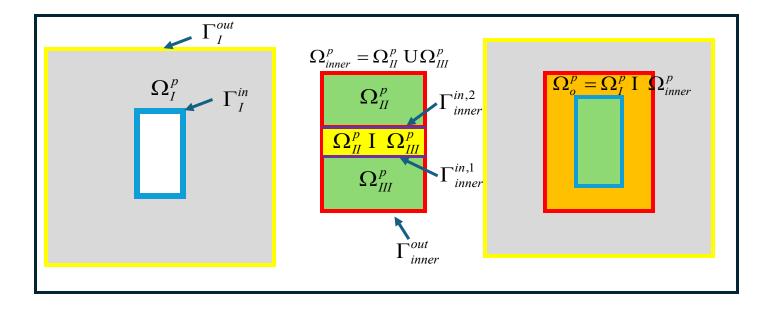


Future work: Adaptive extension of the ML –simulated subdomain

Initial decomposed domains



Decomposed domain after a few timesteps



Key Points

• We successfully employed domain decomposition using FE-NO coupling.

• We significantly reduced error accumulation for time dependent systems using Newmark-Beta time marching method.

• We are implementing adaptive extension of ML-simulated subdomains.

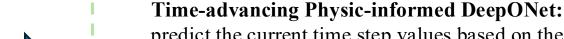
2. Temporal dimension coupling: new physic-informed DeepONet architecture

Newmark-beta time discretization method:

$$u\&(t+dt) = u\&+dt \left[(1-\gamma)u\&+\gamma u\&(t+dt) \right]$$

$$\mathbf{x}(t+dt) = \frac{1}{\left(dt\right)^{2}\beta} \left[-u - \mathbf{x}(t+dt)\right] - \frac{\left(1-2\beta\right)}{2\beta}\mathbf{x}$$

$$[M] \mathcal{U}(t+dt) = [K] u(t+dt) + [F(t+dt)]$$

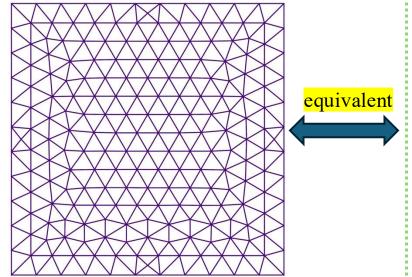


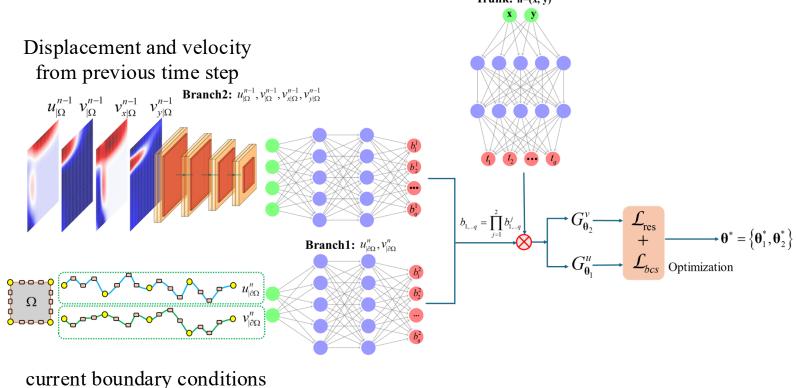
predict the current time step values based on the displacement, velocity, acceleration from previous time step and current boundary conditions

Covert into strong form in physics-informed DeepONet

New DeepONet architecture

Numerical solver: FEM





2. Temporal dimension coupling: Working Flowchart of time advancing NOs

